On the flux of oxygenated volatile organic compounds from organic aerosol oxidation

نویسندگان

  • Alan J. Kwan
  • John D. Crounse
  • Antony D. Clarke
  • Yohei Shinozuka
  • Bruce E. Anderson
  • James H. Crawford
  • Melody A. Avery
  • Cameron S. McNaughton
  • William H. Brune
  • Hanwant B. Singh
  • Paul O. Wennberg
چکیده

[1] Previous laboratory and field studies suggest that oxidation of organic aerosols can be a source of oxygenated volatile organic compounds (OVOC). Using measurements of atmospheric oxidants and aerosol size distributions performed on the NASA DC-8 during the INTEX-NA campaign, we estimate the potential magnitude of the continental summertime OVOC flux from organic aerosol oxidation by OH to be as large as 70 pptv C/day in the free troposphere. Contributions from O3, H2O2, photolysis, and other oxidants may increase this estimate. These processes may provide a large, diffuse source of OVOC that has not been included in current atmospheric models, and thus have a significant impact on our understanding of organic aerosol, OVOC, PAN, and HOx chemistry. The potential importance and highly uncertain nature of our estimate highlights the need for more field and laboratory studies on organic aerosol composition and aging. Citation: Kwan, A. J., et al. (2006), On the flux of oxygenated volatile organic compounds from organic aerosol oxidation, Geophys. Res. Lett., 33, L15815, doi:10.1029/2006GL026144.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emission, oxidation, and secondary organic aerosol formation of volatile organic compounds as observed at Chebogue Point, Nova Scotia

[1] We report the detection of a class of related oxygenated compounds by proton-transfer-reaction mass-spectrometry (PTR-MS) that have rarely or never been observed as a group using in situ instrumentation. Measurements were made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 in Chebogue Point, Nova Scotia. The detected class of c...

متن کامل

Urban flux measurements reveal a large pool of oxygenated volatile organic compound emissions

Atmospheric chemistry is fueled by a large annual influx of nonmethane volatile organic compounds (NMVOC). These compounds influence ozone formation, lead to secondary organic aerosol production, and play a significant role for the oxidizing capacity of the atmosphere. The anthropogenic NMVOC budget is considerably uncertain due to the diversity of urban emission sources. Here, we present compr...

متن کامل

Formation of highly oxygenated organic molecules from aromatic compounds

Anthropogenic volatile organic compounds (AVOC) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHC), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g. from handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that oxidation of aromatics with OH leads to a...

متن کامل

Simulating the detailed chemical composition of secondary organic aerosol formed on a regional scale during the TORCH 2003 campaign in the southern UK

Following on from the companion study (Johnson et al., 2006), a photochemical trajectory model (PTM) has been used to simulate the chemical composition of organic aerosol for selected events during the 2003 TORCH (Tropospheric Organic Chemistry Experiment) field campaign. The PTM incorporates the speciated emissions of 124 nonmethane anthropogenic volatile organic compounds (VOC) and three repr...

متن کامل

Equilibration timescale of atmospheric secondary organic aerosol partitioning

[1] Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, teq, of SOA ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006